KID-PPG: Knowledge Informed Deep Learning for Extracting Heart Rate from a Smartwatch
Publicat a:Ieee Transactions On Biomedical Engineering. - 2024-01-01 (), DOI: 10.1109/TBME.2024.3477275
Autors: Kechris C; Dan J; Miranda J; Atienza D
Afiliacions
Resum
Accurate extraction of heart rate from photoplethysmography (PPG) signals remains challenging due to motion artifacts and signal degradation. Although deep learning methods trained as a data-driven inference problem offer promising solutions, they often underutilize existing knowledge from the medical and signal processing community. In this paper, we address three shortcomings of deep learning models: motion artifact removal, degradation assessment, and physiologically plausible analysis of the PPG signal. We propose KID-PPG, a knowledge-informed deep learning model that integrates expert knowledge through adaptive linear filtering, deep probabilistic inference, and data augmentation. We evaluate KID-PPG on the PPGDalia dataset, achieving an average mean absolute error of 2.85 beats per minute, surpassing existing reproducible methods. Our results demonstrate a significant performance improvement in heart rate tracking through the incorporation of prior knowledge into deep learning models. This approach shows promise in enhancing various biomedical applications by incorporating existing expert knowledge in deep learning models. © 1964-2012 IEEE.
Paraules clau
Indicis de qualitat
Impacte bibliomètric. Anàlisi de la contribució i canal de difusió
El treball ha estat publicat a la revista Ieee Transactions On Biomedical Engineering a causa de la seva progressió i el bon impacte que ha aconseguit en els últims anys, segons l'agència Scopus (SJR), s'ha convertit en una referència en el seu camp. A l'any de publicació del treball, 2024 encara no hi ha indicis calculats, però el 2023, es trobava a la posició , aconseguint així situar-se com a revista Q1 (Primer Cuartil), en la categoria Biomedical Engineering.
Independentment de l'impacte esperat determinat pel canal de difusió, és important destacar l'impacte real observat de la pròpia aportació.
Segons les diferents agències d'indexació, el nombre de citacions acumulades per aquesta publicació fins a la data 2025-07-13:
- Scopus: 1
Impacte i visibilitat social
Anàlisi del lideratge dels autors institucionals
Aquest treball s'ha realitzat amb col·laboració internacional, concretament amb investigadors de: Switzerland.