Publicacions
>
Revista científica

Smart Innovation, Systems and Technologies

Publicat a: - (), DOI: 21903018

Autors: BRISO RODRIGUEZ, CESAR

Afiliacions

Universidad Politécnica de Madrid - Autor o coautor

Resum

Neural Collaborative Filtering recommendations are traditionally based on regression architectures (returning continuous predictions, e.g. 2.8 stars), such as DeepMF and NCF. However, there are advantages in the use of collaborative filtering classification models. This work tested both neuronal approaches using a set of representative open datasets, baselines, and quality measures. The results show the superiority of the regular regression model compared to the regular classification model (returning discrete predictions, e.g. 1–5 stars) and the binary classification model (returning binary predictions: recommended, non-recommended). Results also show a similar performance when comparing our proposed recommendation neural approach with the state-of-the-art neural regression baseline. The key issue is the additional information the recommendation approach provides compared to the regression model: While the regression baseline only returns the recommendation values, the proposed recommendation model returns ⟨ value, probability ⟩ pairs. Extra probability information can be used in the recommender systems area for different objectives: recommendation explanation, visualization of results, quality improvements, mitigate attack risks, etc. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Paraules clau

Binary classificationClassification modelClassification modelsCollaborative filteringCollaborative filtering recommendationsDeep learningForecastingNeural collaborative filteringPerformanceQuality measuresRecommender systemsRegression analysisRegression modellingRegular regressionStarsState of the art

Indicis de qualitat

Impacte i visibilitat social

Seguint amb l'impacte social del treball, és important destacar el fet que, pel seu contingut, pot ser assignat a la línia d'interès de ODS 17 - Strengthen the means of implementation and revitalize the global partnership for sustainable development goals, amb una probabilitat del 48% segons l'algoritme mBERT desenvolupat per Aurora University.

Anàlisi del lideratge dels autors institucionals

Aquest treball s'ha realitzat amb col·laboració internacional, concretament amb investigadors de: Germany; United States of America.

Hi ha un lideratge significatiu, ja que alguns dels autors pertanyents a la institució apareixen com a primer o últim signant, es pot apreciar en el detall: Últim Autor ().