Publicaciones
>
Revista Científica

Smart Innovation, Systems and Technologies

Publicado en: - (), DOI: 21903018

Autores: BRISO RODRIGUEZ, CESAR

Afiliaciones

Universidad Politécnica de Madrid - Autor o Coautor

Resumen

Neural Collaborative Filtering recommendations are traditionally based on regression architectures (returning continuous predictions, e.g. 2.8 stars), such as DeepMF and NCF. However, there are advantages in the use of collaborative filtering classification models. This work tested both neuronal approaches using a set of representative open datasets, baselines, and quality measures. The results show the superiority of the regular regression model compared to the regular classification model (returning discrete predictions, e.g. 1–5 stars) and the binary classification model (returning binary predictions: recommended, non-recommended). Results also show a similar performance when comparing our proposed recommendation neural approach with the state-of-the-art neural regression baseline. The key issue is the additional information the recommendation approach provides compared to the regression model: While the regression baseline only returns the recommendation values, the proposed recommendation model returns ⟨ value, probability ⟩ pairs. Extra probability information can be used in the recommender systems area for different objectives: recommendation explanation, visualization of results, quality improvements, mitigate attack risks, etc. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Palabras clave

Binary classificationClassification modelClassification modelsCollaborative filteringCollaborative filtering recommendationsDeep learningForecastingNeural collaborative filteringPerformanceQuality measuresRecommender systemsRegression analysisRegression modellingRegular regressionStarsState of the art

Indicios de calidad

Impacto y visibilidad social

Siguiendo con el impacto social del trabajo, es importante enfatizar el hecho de que, por su contenido, puede ser asignado a la línea de interés del ODS 17 - Revitalizar la Alianza Mundial para el Desarrollo Sostenible, con una probabilidad del 48% según el algoritmo mBERT desarrollado por Aurora University.

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Germany; United States of America.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Último Autor ().