
Indexado en
Licencia y uso
Análisis de autorías institucional
Moya-Almeida VAutor o CoautorDiezma-Iglesias BAutor o CoautorCorrea-Hernando EAutor o CoautorVaquero-Miguel CAutor o CoautorAlvarado-Arias NAutor o CoautorSetpoint temperature estimation to achieve target solvent concentrations in S. cerevisiae fermentations using inverse neural networks and fuzzy logic
Publicado en:Engineering Applications Of Artificial Intelligence. 127 107248- - 2024-01-01 127(), DOI: 10.1016/j.engappai.2023.107248
Autores: Moya-Almeida, V; Diezma-Iglesias, B; Correa-Hernando, E; Vaquero-Miguel, C; Alvarado-Arias, N
Afiliaciones
Resumen
Over the years, many technical advances have been made to improve the final quality of beers by controlling the concentrations of compounds obtained at the end of alcoholic fermentation. However, these efforts have mainly focused on increasing ethanol and reducing other compounds considered defects. This study addresses the challenge of obtaining specific concentrations of four solvent compounds (isobutanol, ethyl acetate, amyl alcohols, and n-propanol) produced by the yeast S. cerevisiae Safale S04, determined by an expert. A model based on four inverse neural networks (INNs) has been developed to predict the target temperature required to achieve the desired concentrations. These INNs have been trained using virtual data generated by four artificial neural networks (ANNs), as described in detail in previous work. For implementation, a fuzzy control system based on the Mamdani inference method was utilized. To experimentally validate the results, four complete fermentations were conducted. The INNs were found to be accurate tools for predicting the target temperatures based on predetermined compound concentrations, with R2 values ranging from 0.982 to 0.986. When comparing the experimental concentration data, the most accurate prediction was achieved for n-propanol, with an average error of 0.18 mg L−1, while ethyl acetate had an error of 0.25 mg L−1, isobutanol had an error of 0.48 mg L−1, and amyl alcohols, being the least precise prediction, had an error of 0.83 mg L−1.
Palabras clave
Indicios de calidad
Impacto bibliométrico. Análisis de la aportación y canal de difusión
El trabajo ha sido publicado en la revista Engineering Applications Of Artificial Intelligence debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2024 aún no existen indicios calculados, pero en 2023, se encontraba en la posición 24/197, consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Computer Science, Artificial Intelligence.
2025-06-18:
- WoS: 3
- Scopus: 3
Impacto y visibilidad social
Análisis de liderazgo de los autores institucionales
Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Ecuador.
Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (MOYA ALMEIDA, VINICIO ANTONIO) y Último Autor (ALVARADO ARIAS, NATALIA).