{rfName}
In

Indexado en

Licencia y uso

Citaciones

5

Altmetrics

Análisis de autorías institucional

Li, EnmingAutor o Coautor

Compartir

Publicaciones
>
Artículo

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

Publicado en:Computers And Concrete. 32 (6): 577-594 - 2023-01-01 32(6), DOI: 10.12989/cac.2023.32.6.577

Autores: Li E; Zhang N; Xi B; Tam VWY; Wang J; Zhou J

Afiliaciones

Central South University - Autor o Coautor
Leibniz Institute of Ecological Urban and Regional Development - Autor o Coautor
Politecnico di Milano - Autor o Coautor
The University of Hong Kong - Autor o Coautor
Universidad Politécnica de Madrid - Autor o Coautor
Western Sydney University - Autor o Coautor
Ver más

Resumen

Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.

Palabras clave

Engineered cementitious composites (ecc)Green concreteLimestone calcined clay cement (lc ) 3Metaheuristic optimizationSupport vector regression

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Computers And Concrete debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia Scopus (SJR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2023, se encontraba en la posición , consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Computational Mechanics.

2025-06-11:

  • Scopus: 5

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-06-11:

  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 23 (PlumX).

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Australia; China; Germany; Hong Kong; Italy.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (LI, ENMING) .