
Indexado en
Licencia y uso

Impacto en los Objetivos de Desarrollo Sostenible (ODS)

Análisis de autorías institucional
Perez Sanz, LuisAutor o CoautorSerrano Mira, LidiaAutor o CoautorPérez-Castán Ja, San Martín-Gueimunde Cf, Sanz Lp, Serrano-Mira L, Tukaric IAutor (correspondencia)Machine Learning experiments for design purposes in air-traffic conflict-detection tool
Publicado en:Transportation Research Procedia. 73 273-280 - 2023-01-01 73(), DOI: 10.1016/j.trpro.2023.11.918
Autores: Pérez-Castán JA; San Martín-Gueimunde CF; Sanz LP; Serrano-Mira L; Tukaric I
Afiliaciones
Resumen
Machine learning (ML) is the ability of computers to learn mathematical relations to make predictions based on historical data. In recent years, ML has evolved rapidly and has become one of the most promising predictors. This work is aimed at providing insights into different experiments needed to optimize the design and performance of Conflict Detection (CD) tools based on ML algorithms. CD is the process of identifying pairs of aircraft that are likely to violate separation minima. Until now, CD predictors have been based on mathematical technology, i.e., the standard CD procedure is to predict aircraft trajectories and then analyze them to identify separation infringements. The approach presented here advances CD procedure by directly predicting separation infringement without the need to predict trajectory. This data-driven approach takes into account the ADS-B data broadcast by aircraft and the relative variables calculated between aircraft pairs. The algorithm's output is a prediction of the distance at the nearest axis. The results show insights into various possible solutions for building CD modules: depending on the aircraft pair's convergence or divergence, the aircraft pair considers reducing proximity distances, and it is evaluated if one predictor based on 3D separation provides better results than the combination of horizontal and vertical independent predictors. The goal is to analyze different operational solutions and identify the best solution to optimize CD tool performance. © 2023 The Authors. Published by ELSEVIER B.V.
Palabras clave
Indicios de calidad
Impacto bibliométrico. Análisis de la aportación y canal de difusión
El trabajo ha sido publicado en la revista Transportation Research Procedia, Q3 Agencia Scopus (SJR), su enfoque regional y su especialización en Transportation, le otorgan un reconocimiento lo suficientemente significativo en un nicho concreto del conocimiento científico a nivel internacional.
2025-07-08:
- Scopus: 1
Impacto y visibilidad social
Análisis de liderazgo de los autores institucionales
Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Croatia.
Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (PEREZ CASTAN, JAVIER ALBERTO) .
el autor responsable de establecer las labores de correspondencia ha sido PEREZ CASTAN, JAVIER ALBERTO.