{rfName}
Pl

Licencia y uso

Icono OpenAccess

Citaciones

8

Altmetrics

Análisis de autorías institucional

Castellanos AAutor o Coautor

Compartir

24 de junio de 2024
Publicaciones
>
Artículo

Plausibility of a Neural Network Classifier-Based Neuroprosthesis for Depression Detection via Laughter Records.

Publicado en:Frontiers In Neuroscience. 13 267- - 2019-01-01 13(), DOI: 10.3389/fnins.2019.00267

Autores: Navarro J; Fernández Rosell M; Castellanos A; Del Moral R; Lahoz-Beltra R; Marijuán PC

Afiliaciones

Aragon Institute of Health Science (IACS), Zaragoza, Spain. - Autor o Coautor
Department of Applied Mathematics, Universidad Politécnica de Madrid, Madrid, Spain. - Autor o Coautor
Department of Biodiversity, Ecology, Evolution (Biomathematics), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain. - Autor o Coautor

Resumen

The present work explores the diagnostic performance for depression of neural network classifiers analyzing the sound structures of laughter as registered from clinical patients and healthy controls. The main methodological novelty of this work is that simple sound variables of laughter are used as inputs, instead of electrophysiological signals or local field potentials (LFPs) or spoken language utterances, which are the usual protocols up-to-date. In the present study, involving 934 laughs from 30 patients and 20 controls, four different neural networks models were tested for sensitivity analysis, and were additionally trained for depression detection. Some elementary sound variables were extracted from the records: timing, fundamental frequency mean, first three formants, average power, and the Shannon-Wiener entropy. In the results obtained, two of the neural networks show a diagnostic discrimination capability of 93.02 and 91.15% respectively, while the third and fourth ones have an 87.96 and 82.40% percentage of success. Remarkably, entropy turns out to be a fundamental variable to distinguish between patients and controls, and this is a significant factor which becomes essential to understand the deep neurocognitive relationships between laughter and depression. In biomedical terms, our neural network classifier-based neuroprosthesis opens up the possibility of applying the same methodology to other mental-health and neuropsychiatric pathologies. Indeed, exploring the application of laughter in the early detection and prognosis of Alzheimer and Parkinson would represent an enticing possibility, both from the biomedical and the computational points of view.

Palabras clave

Depression detectionLaughter sound structuresNeural network classifiersNeuroprosthesisNeuropsychiatry

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Frontiers In Neuroscience debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia Scopus (SJR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2019, se encontraba en la posición , consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Neuroscience (Miscellaneous).

Desde una perspectiva relativa, y atendiendo al indicador del impacto normalizado calculado a partir del Field Citation Ratio (FCR) de la fuente Dimensions, arroja un valor de: 1.74, lo que indica que, de manera comparada con trabajos en la misma disciplina y en el mismo año de publicación, lo ubica como trabajo citado por encima de la media. (fuente consultada: Dimensions Jul 2025)

De manera concreta y atendiendo a las diferentes agencias de indexación, el trabajo ha acumulado, hasta la fecha 2025-07-16, el siguiente número de citas:

  • Scopus: 8

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-07-16:

  • El uso, desde el ámbito académico evidenciado por el indicador de la agencia Altmetric referido como agregaciones realizadas por el gestor bibliográfico personal Mendeley, nos da un total de: 38.
  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 48 (PlumX).

Con una intencionalidad más de divulgación y orientada a audiencias más generales podemos observar otras puntuaciones más globales como:

  • El Score total de Altmetric: 0.75.
  • El número de menciones en la red social X (antes Twitter): 2 (Altmetric).

Es fundamental presentar evidencias que respalden la plena alineación con los principios y directrices institucionales en torno a la Ciencia Abierta y la Conservación y Difusión del Patrimonio Intelectual. Un claro ejemplo de ello es:

  • El trabajo se ha enviado a una revista cuya política editorial permite la publicación en abierto Open Access.