{rfName}
To

Licencia y uso

Altmetrics

Grant support

We acknowledge the support from the MAD2D-CM project on Twodimensional disruptive materials funded by the Community of Madrid, the Recovery, Transformation and Resilience Plan, Spain, and NextGenerationEU from the European Union. Additionally, M.G. was supported by the U.S. National Science Foundation Division of Material Research, Spain (Grant No. DMR2153316) through the International Research Experience for Students (IRES) program.

Análisis de autorías institucional

Özdemir, BurcuAutor o Coautor

Compartir

Publicaciones
>
Artículo

Toward 3D printability prediction for thermoplastic polymer nanocomposites: Insights from extrusion printing of PLA-based systems

Publicado en:Additive Manufacturing. 95 104533- - 2024-09-05 95(), DOI: 10.1016/j.addma.2024.104533

Autores: Ozdemir, B; Hernández-del-Valle, M; Gaunt, M; Schenk, C; Echevarría-Pastrana, L; Fernández-Blázquez, JP; Wang, DY; Haranczyk, M

Afiliaciones

IMDEA Mat Inst, C-Er Kandel 2, Getafe 28906, Madrid, Spain - Autor o Coautor
Michigan State Univ, E Lansing, MI 48824 USA - Autor o Coautor
Univ Carlos III Madrid, Leganes 28911, Madrid, Spain - Autor o Coautor
Univ Politecn Madrid, Madrid 28040, Spain - Autor o Coautor

Resumen

The development of new thermoplastic-based nanocomposites for, as well as using, 3D printing requires extensive experimental testing. One typically goes through many failed, or otherwise sub-optimal, iterations before finding acceptable solutions (e.g. compositions, 3D printing parameters). It is desirable to reduce the number of such iterations as well as exclude failed experiments that often require laborious disassembly and cleaning of the 3D printer. This issue could be addressed if we were able to understand, and ultimately predict ahead of experiments if a given material can be 3D printed successfully. Herein, we report on our investigations into forecasting the printing and resultant properties of polymer nanocomposites while encompassing both material properties and printing parameters, enabling the model to generalize across various thermoplastics and additives. To do so, nanocomposites of two different commercially available bio-based PLAs with varying concentrations of nanoclay (NC) and graphene nanoplatelets (GNP) were prepared using a twin-screw extruder. The thermal and rheological properties of the nanocomposites were analyzed. These materials were printed at varying temperature and flow using a pellet printer. The quality of the printing was evaluated by measuring weight fluctuation, internal diameter of cylindrical specimen, and surface uniformity. The interactions between material properties and printing parameters are complex but captured effectively by a machine learning model, specifically we demonstrate such a predictive model to forecast printability and, printing quality utilizing a Random Forest algorithm. Printability was predicted by developing a classification model with constraints based on the weight fluctuation (Delta W) of the printed sample w.r.t. the optimal print; defining "not printable" for -1.0 = -0.8. The classification model for predicting printability, performed well with an accuracy of 92.8% and identified flow index and complex viscosity, contributing 52% to the model's importance. Another model to predict Delta W of the only on successful prints also showed strong performance, emphasizing the importance of viscoelastic properties, thermal stability, and printing temperature. For diameter change (Delta D-i), the Random Forest model identified flow consistency index, complex viscosity, and thermal stability as influential parameters, with crystallization enthalpy gaining increased importance, reflecting its role in crystallization and shrinkage. In contrast, the surface roughness average (RA) model had lower performance, yet revealed remarkable insights regarding the feature importance with crystallization enthalpy and complex viscosity being most significant.

Palabras clave

Machine learninMachine learningNanocompositesPellet 3d printerPrintabilityRheologyThermoplastics

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Additive Manufacturing debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2024 aún no existen indicios calculados, pero en 2023, se encontraba en la posición 51/439, consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Materials Science, Multidisciplinary.

2025-06-10:

  • Scopus: 2

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-06-10:

  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 10 (PlumX).

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: United States of America.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (ÖZDEMIR, BURCU) .