
Indexado en
Licencia y uso
Citaciones
Altmetrics
Lattice-based time-delay neural network for speech processing
Publicado en:Lecture Notes In Computer Science. 930 963-970 - 1995-01-01 930(), DOI:
Autores: Gomez, P; Rodellar, V; Nieto, V; Hombrados, MA
Afiliaciones
Resumen
The use of Time-Delay Neural Networks (TDNN's) in Continuous Speech Recognition has not been as relevant as it was expected due to the computational costs implied by Time-Delay orders, as it was taken for granted that the bigger the orders, the better the representation of the dynamic essence of Speech. This paper focuses on the true differential nature of this representation, and proposes to see TDNN's as devices working on differential relations among delayed versions of Speech Spectra, using Lattice Predictors as processing delay lines, which de-correlate the information which is presented to the computing nodes. This results in optimally compact structures (minimum number of delays), and better convergence rates. Convergence experiments show that reductions in the global computational costs as low as 1:5 may be achieved using structures based on this method as compared with traditional TDMN's.
Palabras clave
Indicios de calidad
Análisis de liderazgo de los autores institucionales
Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (GOMEZ VILDA, PEDRO) y Último Autor (HOMBRADOS LOPEZ, MIGUEL ANGEL).
el autor responsable de establecer las labores de correspondencia ha sido GOMEZ VILDA, PEDRO.