
Indexat a
Llicència i ús

Citacions
Grant support
This research was funded by Comunidad de Madrid within the framework of the Convenio Plurianual con la Universidad Politecnica de Madrid en la linea de actuacion Programa de Excelencia para el Profesorado Universitario (E.M., M190020074BEMV). We also acknowledge financial support from the Universidad Politecnica de Madrid through the projects VAGI23JPMC and VAGI24JPMC. C.K. was funded by the Algerian government (057Bis/PG/Espagne/2020-2021). J.G. and J.M.P. were funded by the Spanish Ministry of Science and Innovation (MICINN) through the ChaSisCOMA (PID2021-122711NB-C21) project. K.V. was supported by the University of Antwerp (BOF-NOI) and the Research Foundation Flanders (FWO, grant G013023N).
Anàlisi d'autories institucional
Khoulali, CeliaAutor o coautorPastor, Juan ManuelAutor o coautorGaleano, JavierAutor o coautorMiedes, EvaAutor (correspondència)Cell Wall-Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis
Publicat a:International Journal Of Molecular Sciences. 26 (7): 2946- - 2025-03-24 26(7), DOI: https://doi.org/10.3390/ijms26072946
Autors: Khoulali, Celia; Pastor, Juan Manuel; Galeano, Javier; Vissenberg, Kris; Miedes, Eva
Afiliacions
Resum
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we employed onion (Allium cepa L.) epidermis as a model system, leveraging its layered organization to investigate growth stages. Microscopic analysis revealed proportional variations in cell size in different epidermal layers, offering insights into growth dynamics and CW structural adaptations. Fourier transform infrared spectroscopy (FTIR) identified 11 distinct spectral intervals associated with CW components, highlighting structural modifications that influence wall elasticity and rigidity. Biochemical assays across developmental layers demonstrated variations in cellulose, soluble sugars, and antioxidant content, reflecting biochemical shifts during growth. The differential expression of ten cell wall enzyme (CWE) genes, analyzed via RT-qPCR, revealed significant correlations between gene expression patterns and CW composition changes across developmental layers. Notably, the gene expression levels of the pectin methylesterase and fucosidase enzymes were associated with the contents in cellulose, soluble sugar, and antioxidants. To complement these findings, machine learning models, including Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Neural Networks, were employed to integrate FTIR data, biochemical parameters, and CWE gene expression profiles. Our models achieved high accuracy in predicting growth stages. This underscores the intricate interplay among CW composition, CW enzymatic activity, and growth dynamics, providing a predictive framework with applications in enhancing crop productivity and sustainability.
Paraules clau
Indicis de qualitat
Impacte bibliomètric. Anàlisi de la contribució i canal de difusió
El treball ha estat publicat a la revista International Journal Of Molecular Sciences a causa de la seva progressió i el bon impacte que ha aconseguit en els últims anys, segons l'agència WoS (JCR), s'ha convertit en una referència en el seu camp. A l'any de publicació del treball, 2025, es trobava a la posició 68/231, aconseguint així situar-se com a revista Q1 (Primer Cuartil), en la categoria Chemistry, Multidisciplinary.
Impacte i visibilitat social
Anàlisi del lideratge dels autors institucionals
Aquest treball s'ha realitzat amb col·laboració internacional, concretament amb investigadors de: Belgium; Greece.
Hi ha un lideratge significatiu, ja que alguns dels autors pertanyents a la institució apareixen com a primer o últim signant, es pot apreciar en el detall: Primer Autor (KHOULALI, CELIA) i Últim Autor (MIEDES VICENTE, EVA).
l'autor responsable d'establir les tasques de correspondència ha estat MIEDES VICENTE, EVA.