
Indexed in
License and use
Grant support
The research leading to these results was supported in part by the following: (i) the Grant PID2020-116270RB-I00 funded by MCIN/AEI/10.13039/501100011033; (ii) the Grant TED2021-132710B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the "European Union NextGenerationEU/PRTR"; (iii) iRoboCity2030-CM, Robotica Inteligente para Ciudades Sostenibles (TEC-2024/TEC-62), funded by the Programas de Actividades I+D en Tecnologias en la Comunidad de Madrid; and (iv) CSIC under Grant 202350E072, Proyecto Intramural IAMC-ROBI-II (Inteligencia Artificial y Mecatronica Cognitiva para la Manipulacion Robotica Bimanual-2 degrees Fase).
Analysis of institutional authors
Rodriguez-Nieto, DanielAuthorParallel Fin Ray Soft Gripper with Embedded Mechano-Optical Force Sensor
Publicated to:Applied Sciences-Basel. 15 (5): 2576- - 2025-03-01 15(5), DOI: 10.3390/app15052576
Authors: Navas, Eduardo; Rodriguez-Nieto, Daniel; Rodriguez-Gonzalez, Alain Antonio; Fernandez, Roemi
Affiliations
Abstract
The rapid advancement in soft robotics over the past decade has driven innovation across the industrial, medical, and agricultural sectors. Among various soft robotic designs, Fin Ray-inspired soft grippers have demonstrated remarkable adaptability and efficiency in handling delicate objects. However, the integration of force sensors in soft grippers remains a significant challenge, as conventional rigid sensors compromise the inherent flexibility and compliance of soft robotic systems. This study presents a parallel soft gripper based on the Fin Ray effect, incorporating an embedded mechano-optical force sensor capable of providing linear force measurements up to 150 N. The gripper is entirely 3D printed using thermoplastic elastomers (TPEs), ensuring a cost-effective, scalable, and versatile design. The proposed sensor architecture leverages a gyroid lattice structure, yielding a near-linear response with an R2 value of 0.96 across two force regions. This study contributes to the development of sensorized soft grippers with improved force-sensing capabilities while preserving the advantages of soft robotic manipulators.
Keywords
Quality index
Bibliometric impact. Analysis of the contribution and dissemination channel
The work has been published in the journal Applied Sciences-Basel due to its progression and the good impact it has achieved in recent years, according to the agency WoS (JCR), it has become a reference in its field. In the year of publication of the work, 2025, it was in position 258/439, thus managing to position itself as a Q1 (Primer Cuartil), in the category Materials Science, Multidisciplinary.
Independientemente del impacto esperado determinado por el canal de difusión, es importante destacar el impacto real observado de la propia aportación.
Según las diferentes agencias de indexación, el número de citas acumuladas por esta publicación hasta la fecha 2025-07-06:
- Scopus: 1
Impact and social visibility
Leadership analysis of institutional authors
There is a significant leadership presence as some of the institution’s authors appear as the first or last signer, detailed as follows: First Author (Navas, Eduardo) and Last Author (Fernandez, Roemi).
the authors responsible for correspondence tasks have been Navas, Eduardo and Fernandez, Roemi.