{rfName}
Ce

Licencia y uso

Citaciones

Altmetrics

Grant support

This research was funded by Comunidad de Madrid within the framework of the Convenio Plurianual con la Universidad Politecnica de Madrid en la linea de actuacion Programa de Excelencia para el Profesorado Universitario (E.M., M190020074BEMV). We also acknowledge financial support from the Universidad Politecnica de Madrid through the projects VAGI23JPMC and VAGI24JPMC. C.K. was funded by the Algerian government (057Bis/PG/Espagne/2020-2021). J.G. and J.M.P. were funded by the Spanish Ministry of Science and Innovation (MICINN) through the ChaSisCOMA (PID2021-122711NB-C21) project. K.V. was supported by the University of Antwerp (BOF-NOI) and the Research Foundation Flanders (FWO, grant G013023N).

Análisis de autorías institucional

Khoulali, CeliaAutor o CoautorPastor, Juan ManuelAutor o CoautorGaleano, JavierAutor o CoautorMiedes, EvaAutor (correspondencia)
Compartir
Publicaciones
>
Artículo

Cell Wall-Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis

Publicado en:International Journal Of Molecular Sciences. 26 (7): 2946- - 2025-03-24 26(7), DOI: https://doi.org/10.3390/ijms26072946

Autores: Khoulali, Celia; Pastor, Juan Manuel; Galeano, Javier; Vissenberg, Kris; Miedes, Eva

Afiliaciones

Grp Interdisciplinar Sistemas Complejos GISC, Madrid, Spain - Autor o Coautor
Hellen Mediterranean Univ, Dept Agr, Iraklion 71410, Crete, Greece - Autor o Coautor
Univ Antwerp, Fac Sci, Dept Biol, B-2020 Antwerp, Belgium - Autor o Coautor
Univ Politecn Madrid, Biodivers & Conservat Plant Genet Resources UPM Re, Madrid 28040, Spain - Autor o Coautor
Univ Politecn Madrid, Escuela Tecn Super Ingn Agron Alimentaria & Biosis, Complex Syst Res Grp UPM, Madrid 28040, Spain - Autor o Coautor
Univ Politecn Madrid, Escuela Tecn Super Ingn Agron Alimentaria & Biosis, Dept Biotechnol Plant Biol, Madrid 28040, Spain - Autor o Coautor
Ver más

Resumen

The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we employed onion (Allium cepa L.) epidermis as a model system, leveraging its layered organization to investigate growth stages. Microscopic analysis revealed proportional variations in cell size in different epidermal layers, offering insights into growth dynamics and CW structural adaptations. Fourier transform infrared spectroscopy (FTIR) identified 11 distinct spectral intervals associated with CW components, highlighting structural modifications that influence wall elasticity and rigidity. Biochemical assays across developmental layers demonstrated variations in cellulose, soluble sugars, and antioxidant content, reflecting biochemical shifts during growth. The differential expression of ten cell wall enzyme (CWE) genes, analyzed via RT-qPCR, revealed significant correlations between gene expression patterns and CW composition changes across developmental layers. Notably, the gene expression levels of the pectin methylesterase and fucosidase enzymes were associated with the contents in cellulose, soluble sugar, and antioxidants. To complement these findings, machine learning models, including Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Neural Networks, were employed to integrate FTIR data, biochemical parameters, and CWE gene expression profiles. Our models achieved high accuracy in predicting growth stages. This underscores the intricate interplay among CW composition, CW enzymatic activity, and growth dynamics, providing a predictive framework with applications in enhancing crop productivity and sustainability.

Palabras clave
<italic>allium cepa</italic> l.Allium cepa l.Allium cepalAllium-cepa l.ArabidopsisCell wallCell wall compositionCell wall enzymesCelluloseComponentFlavonoidsGene expression regulation, plantIdentificationMachine learningMechanicsMetabolismModelinModelingOnion epidermisOnionsPectinPlant epidermisPlant growthSpectroscopy, fourier transform infraredSupport vector machineXthXyloglucan endotransglucosylase

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista International Journal Of Molecular Sciences debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2025, se encontraba en la posición 68/231, consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Chemistry, Multidisciplinary.

Impacto y visibilidad social

Es fundamental presentar evidencias que respalden la plena alineación con los principios y directrices institucionales en torno a la Ciencia Abierta y la Conservación y Difusión del Patrimonio Intelectual. Un claro ejemplo de ello es:

  • Asignación de un Handle/URN como identificador dentro del Depósito en el Repositorio Institucional: https://oa.upm.es/88492/

Como resultado de la publicación del trabajo en el repositorio institucional, se han obtenido datos estadísticos de uso que reflejan su impacto. En términos de difusión, podemos afirmar que, hasta la fecha

  • Visualizaciones: 33
  • Descargas: 8
Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Belgium; Greece.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (KHOULALI, CELIA) y Último Autor (MIEDES VICENTE, EVA).

el autor responsable de establecer las labores de correspondencia ha sido MIEDES VICENTE, EVA.